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Abstract

S100 proteins are small dimeric calcium-binding proteins which control cell cycle, growth and differentiation via
interactions with different target proteins. Intrinsic disorder is a hallmark among many signaling proteins and S100
proteins have been proposed to contain disorder-prone regions. Interestingly, some S100 proteins also form
amyloids: S100A8/A9 forms fibrils in prostatic inclusions and S100A6 fibrillates in vitro and seeds SOD1 aggregation.
Here we report a study designed to investigate whether β-aggregation is a feature extensive to more members of
S100 family. In silico analysis of seven human S100 proteins revealed a direct correlation between aggregation and
intrinsic disorder propensity scores, suggesting a relationship between these two independent properties. Averaged
position-specific analysis and structural mapping showed that disorder-prone segments are contiguous to
aggregation-prone regions and that whereas disorder is prominent on the hinge and target protein-interaction
regions, segments with high aggregation propensity are found in ordered regions within the dimer interface. Acidic
conditions likely destabilize the seven S100 studied by decreasing the shielding of aggregation-prone regions
afforded by the quaternary structure. In agreement with the in silico analysis, hydrophobic moieties become
accessible as indicated by strong ANS fluorescence. ATR-FTIR spectra support a structural inter-conversion from α-
helices to intermolecular β-sheets, and prompt ThT-binding takes place with no noticeable lag phase. Dot blot
analysis using amyloid conformational antibodies denotes a high diversity of conformers; subsequent analysis by
TEM shows fibrils as dominant species. Altogether, our data suggests that β-aggregation and disorder-propensity are
related properties in S100 proteins, and that the onset of aggregation is likely triggered by loss of protective tertiary
and quaternary interactions.
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Introduction

The S100 protein family represents the largest subgroup
within the Ca2+-binding EF-hand protein superfamily. These
proteins are only expressed in vertebrates, thus suggesting
that they are evolutionary young. In humans, 21 different
members involved in a wide variety of both intra and extra-
cellular processes have been identified to date [1,2]. Many
S100 proteins exhibit cell- and tissue-specific expression

patterns as well as specific subcellular localizations, pointing
towards a high degree of specialization among them. They play
a central role in the regulation of several cellular processes
including cell cycle, cell growth, differentiation and motility.
Underlining the importance of S100 proteins in signaling,
altered expression levels of several S100 proteins are
implicated in numerous human disorders. This is the case in
many types of cancer [3], neurodegenerative disorders such as
Alzheimer’s disease (AD) [4-7], inflammatory and autoimmune
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diseases [3,8]. Therefore, S100 proteins hold significant
interest as potential therapeutic targets. S100 proteins exhibit
key structural features common to all members of the family
[9]. Each S100 domain is about 10-12 kDa in size and contains
two EF-hand helix-loop-helix structural motifs arranged in a
back-to-back manner and connected by a flexible hinge [9].
The structure and biological activity of S100 proteins are
modulated by metal ions, including calcium, zinc and copper.
The binding of Ca2+ via EF-hand motifs triggers conformational
changes that lead to the exposure of an inter-helical
hydrophobic protein interaction site [9]. Some S100 proteins
also bind Zn2+ and Cu2+ at secondary binding sites with high
affinity but this is usually associated with subtle conformational
changes [10]. These metal binding properties of S100 proteins
have an important role in the modulation of their folding,
oligomerization state and function as in S100A12 [11,12],
S100A8/A9 [13,14] and S100B [15]. A recent assessment
suggested a high degree of intrinsic disorder in some regions
within S100 proteins, which was hypothesized to correlate with
their broad interactome [16], although S100-target interactions
occur largely via preformed target interaction sites. In any
intrinsically disordered segments are known to be particularly
susceptible to misfolding and aggregation [17-20], and it is
interesting that amyloid β-aggregates have been identified in
some S100 proteins. For example the pro-inflammatory
S100A8/A9 heterodimer was found in amyloid deposits from
prostate cancer patients, in inclusions called corpora amylacea.
Subsequent studies showed that this protein forms amyloid
oligomerization and fibrillation also in vitro [21,22]. Recently,
we showed that S100A6 forms amyloid fibrils under
physiological conditions and that the native protein nucleates
Cu/Zn superoxide dismutase (SOD1) fibrillation, shortening its
nucleation process. These findings suggest a novel role for
S100A6 aggregation in human neuropathologies, particularly in
amyotrophic lateral sclerosis (ALS) [23]. Taking into account
this background, we herein report a study in which we have
analyzed seven human S100 proteins for relationships
between aggregation propensity, disordered regions and
amyloid formation, combining computational and biophysical
tools.

Materials and Methods

Chemicals and Proteins
All reagents were of the highest grade commercially

available. Thioflavin T (ThT) and 8-Anilino-1-
naphthalenesulfonic acid (ANS) were obtained from Sigma. A
Chelex resin (Bio-Rad) was used to remove contaminant trace
metals from all solutions. S100 proteins were expressed and
purified to homogeneity using previously established protocols
for S100A2, S100A3, S100A4, S100A6, S100A12, S100B
[24,25] and S100A8/A9 [13]. Protein concentration was
determined using Bradford’s method [26].

Aggregation and disorder propensity analysis
The amyloidogenic propensity of S100 proteins was

computed using the Zyggregator [27,28] and Waltz [29].
Multiple sequence alignment was performed in ClustalX2.

Intrinsic disorder prediction was performed using the VSL2P
predictor [30,31].

Aggregation Assays
Amyloidogenesis assays were performed as described

previously [24], monitoring ThT emission. Briefly, S100 proteins
were diluted into 50 mM Glycine, pH 2.5, 5 mM TCEP, 5 mM
EDTA and 100 mM NaCl. Final S100 protein concentration was
1 mg/ml and a ratio of ThT: protein of 2 was used. Amyloid
formation was promoted by quiescent incubation at 37 °C. Real
time ThT fluorescence emission at 480 nm was recorded using
a BMG Fluostar Optima fluorescence plate reader upon
excitation at 440nm. Curve analysis and lag time determination
was carried out as described in [32,33]. The lag time was
calculated at different initial time ranges for the different
proteins: S100A4 (0-60 h), S100A6 (0-21 h), S100A8/A9
(0-160 h), S100A12 (0-30 h).

Transmission Electron Microscopy
For visualization by TEM, 5 µl sample aliquots were

absorbed to carbon-coated collodion film supported on 400-
mesh copper grids, and negatively stained with 1% uranyl
acetate. The grids were exhaustively visualized with a Jeol
microscope (JEM-1400), operated at 80 kV.

Dot-blot Analysis
The reactivity of S100 oligomers against conformation-

dependent antibodies was carried out in a dot-blot analysis as
described in [34] using the anti-fibrillar oligomers and fibrils OC
antibody (AB2286 Merck Millipore) and the A11 anti pre-fibrillar
oligomers antibody (AB9234 Merck Millipore) at pH 2.5 at time
0h and after 160 h of incubation. α-synuclein aggregates
(oligomers and fibrils) and Aβ (fibrils) are included as controls
for the reactivity of the OC and A11 conformational antibodies.

ANS binding assay
ANS fluorescence emission spectra were recorded between

400 nm and 600 nm in a Cary Varian Eclipse instrument using
370 nm as excitation wavelength. Samples of 10µM apo S100
proteins were prepared in 50 mM Glycine, pH 2.5, 5 mM TCEP,
5 mM EDTA and 100 mM NaCl at 25°C and incubated for 30
min. After addition of 100 µM ANS the samples were incubated
another 30 min.

ATR FT-IR
Infrared absorption spectra were used to carry out a fast

analysis of protein secondary structure [35] and were acquired
on a Bruker IFS 66/S spectrometer equipped with a MCT
detector and a thermostatized Harrick BioATR II cell. All
measurements were obtained with 8 mg/mL of apo S100A6 at
pH 2.5 or 7.0. Samples were never allowed to dry on the
measuring surface. Each spectrum represents the mean of 150
scans taken at a resolution of 4 cm-1. Band assignments were
based on typical absorption regions for specific secondary
structure elements [36].

β-Aggregation in S100 Proteins
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Analytical size exclusion chromatography
Analytical SEC was performed at room temperature on a

Superdex 75 Tricorn high performance column (GE Healthcare,
Vcolumn =24 ml) connected to an AKTA Purifier UPC-10 system
and run at 0.5 ml/min. The column was calibrated with proteins
of known molecular weight: Fd. A. ambivalens (16 kDa),
cytochrome c (11.8 kDa), ribonuclease A (13.7 kDa),
monomeric SOD1 (16 kDa), chymotrypsinogen (25 kDa),
dimeric SOD1 (32 kDa), ovalbumin (43 kDa) and albumin (67
kDa). 100 µl of S100A6 at 0.5mg/ml was applied and run at pH
3 and 7: running buffers were 50mM Glycine (pH 3) or Tris-HCl
(pH 7) with 5mM TCEP, 5mM EDTA and 150mM NaCl. pH was
set to 3 instead of 2.5 due to the chemical stability range of the
column used.

Results

Aggregation propensity and local disorder in S100
proteins

A set of human S100 proteins representing the diverse
functional diversity of this group was selected to investigate if
β-aggregation is a property extensive to more members of this
protein family (Table 1). The selected S100 proteins are
involved in diverse biological functions and represent members
of different subgroups within the S100 protein family [1].
Intrinsic disorder is a hallmark of signaling proteins as it affords
the structural flexibility required for interactions with multiple
partners [37]; very recently this property has been suggested to
be inherent to many S100 proteins [16]. Since β-aggregation
and amyloid fibril formation are characterized by cross β-
structures, it has been proposed that intrinsic disorder in
proteins promotes this type of aggregation reactions [18]. In
order to investigate the relationship between these two
properties in S100 proteins we first analyzed the aggregation
propensities using the Zyggregator algorithm [28]. Interestingly,
all seven S100 proteins display high global with Zagg>0.63;
S100A2, S100A4 and S100B even reveal aggregation scores
above the threshold for high aggregation propensity (Zagg>1).

As a next step we compared how the mean aggregation score
relates to the disorder score for the studied proteins, as
calculated in [16]. A plot of the predicted disorder versus the
aggregation score analysis showed a linear correlation (r2 =
0.965) between the aggregation and disorder scores indicating
that these two properties are related to each other in the
analyzed S100 proteins (Figure 1). Interestingly, a number of
proteins involved in amyloid diseases which contain disordered
segments revealed a similar trend (amylin, prion protein and
ABri peptide). Indeed, many amyloid deposits formed in
neurodegenerative diseases are caused by precursor proteins
with high intrinsic disorder. Nevertheless, β-aggregation is also
known to depart from globular states, as a result of
conformational fluctuations that favor higher energy conformers
which in parts expose aggregation prone regions (reviewed in
[28,38]).

Tandem arrangement of disordered and aggregation
prone segments in S100 structures

In order to further explore this relationship we have
proceeded with a position specific analysis and structural
mapping of the disorder and aggregation propensities in the
analyzed S100 proteins. Aggregation and disorder scores were
independently computed for individual sequences and the
analyzed S100 proteins displayed a very similar distribution of
aggregation and disorder -prone regions. Since S100 proteins
have very similar structures, it seemed likely that these
properties might be related to their fold. In order to map the
aggregation propensity and predicted disorder to the structure
of the S100 proteins, the position specific scores were
averaged and represented alongside with the secondary
structure (Figure 2A). Position specific representation of
averaged aggregation propensity (red bars) and averaged
disorder (blue trace) show that high aggregation propensity
regions (Zagg>1) are located in helices α1 and α4, contiguous to
locally disordered segments (P>0.5). This is evident within helix
α1 whose C-terminal side residues have high aggregation
scores (residues in red boxes, Zagg1) but are flanked by

Table 1. Functions, disease associations and representative structures of the analyzed S100 Proteins.

Protein Functions Disease association
Representative
structure (PDB ID) References

S100A2 Tumor suppressor protein Cancer 2RGI [54,55]

S100A3
Highly expressed in some astrocytomas. Role in epithelial cell differentiation and
in calcium-dependent hair cuticular barrier formation.

Cancer 1KSO [56,57]

S100A4
Biological role of nuclear S100A4 is uncharacterized. Angiogenic effects and
metastatic progression.

Cancer 1M31 [58-61]

S100A6 Cell proliferation, cytoskeletal dynamics and tumorigenesis
Cancer. Amyotrophic Lateral
Sclerosis

1K9P [1,62]

S100A8/A9 Expressed predominantly in phagocytes. Chemotactic molecule in inflammation. Inflammatory disorders 1XK4 [1,13]
S100A12 Expressed predominantly in phagocytes. Involved in host-parasite response Inflammatory disorders 2WCE [1,11]

S100B
Expressed in astrocytes and in other neuronal populations. Neurotrophic activity.
At nanomolar levels promotes neuron survival and growth. At micromolar levels
leads to apoptosis.

Neurodegeneration. Alzheimer’s
Disease, Down Syndrome, Multiple
Sclerosis

2PRU [63,64]

doi: 10.1371/journal.pone.0076629.t001
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disordered regions on both sides (residues in blue boxes,
P>0.5). The other region with high aggregation propensity is
located in helix α4 which is although being ordered is involved
in target recognition interactions [16], thus being prone to
structural variations. Although these regions are those common
in the analyzed S100 protein, the fact is that additional amino
acids stretched in some of these proteins such as the S100A9
C-terminal tail [39] may also play a role. Predictions of
aggregation prone segments by Waltz [29] are coincident with

these observations (data not shown). Interestingly, interactions
between S100 proteins and their functional targets map to both
ordered and disordered segments, the former mostly involved
in target recognition and the latter in target contacts [16]. This
puts in evidence the key role played by local structural disorder
in S100 functions and structural mapping of these different
regions illustrates how the structures of S100 proteins have
evolved so as to accommodate in a stable globular fold
sequences in contiguous positions with distinct physical and

Figure 1.  Correlation between aggregation propensity and disorder scores for S100 proteins.  Plot of weighted average
aggregation propensity (average Zagg) versus average disorder (PONDR) scores computed using the Zyggregator and VSL2P
algorithms, respectively. Squares stand for to the studied S100 proteins and diamonds for well-known proteins with bona fide
disordered regions (Aβ, PrP, amylin and ABri, as compiled in [18]. The threshold for high aggregation propensity is 1 (Zagg>1) and
for intrinsic disorder is 0.5 (PONDR>0.5).
doi: 10.1371/journal.pone.0076629.g001
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chemical propensities towards aggregation and disorder
(Figure 2B). One interesting observation is that the segments
with high aggregation propensity within helices α1 and α4 are
located at the dimer interface, hence a priori protected by the
quaternary structure from interactions that would promote β-
aggregation (Figure 2C). Nevertheless, the high flexibility and
exposure of nearby disordered segments is likely to result in
structural rearrangements promoting loosening of this
stabilization. Indeed, aggregation-prone segments have been
suggested to be essential for protein folding and for mediating
protein-protein interactions [40]. Herein lies what has been

coined as the danger of structural disorder, as the increased
dynamics and flexibility of disordered regions may, in some
conditions, promote the formation of aggregation prone
conformations [17,18].

Acidic destabilization promotes S100 β-aggregation
In order to study the formation of β-aggregates by S100

proteins we have destabilized the fold of the studied group of
proteins through acidification, a well-established trigger for
promoting aggregation. This has precisely been demonstrated

Figure 2.  Position specific analysis and structural mapping of tandem disordered and aggregation-prone segments in
S100 proteins.  (A) The top scheme is a linear representation of the secondary structure elements in S100 proteins. The red bars in
the plot stand for average aggregation propensity within S100 proteins. The blue curve was redrawn from [16] and represents the
average disorder PONDR VSL2P score for S100 proteins. The threshold for high aggregation propensity is 1 (Zagg>1) and for
intrinsic disorder is 0.5 (P>0.5). Below is a multiple sequence alignment of the studied S100 proteins. The residues with values
above the thresholds for aggregation and intrinsic disorder scores for individual proteins are highlighted in red and blue,
respectively. The residues with values above both thresholds are highlighted in gray. The Ca2+-coordinating residues in the S100
and canonical EF-hands are highlighted in bold. (B) Representation of high aggregation propensity regions (red) of S100 proteins
located in helices α1 and α4 (Zagg>1), which are contiguous to locally disorder-prone segments (blue) mainly in helices α2 and α3
and on the hinge region (PONDR>0.5). (C) Representation of a S100 dimer highlighting the segments with high propensity within
helices α1 and α4 located at the dimer interface, to illustrate the structural protection afforded by dimer assembly.
doi: 10.1371/journal.pone.0076629.g002
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for S100A6, which was shown to undergo amyloid β-
aggregation both at neutral and acidic pH, albeit with very
distinct timescales [23]. Indeed, S100A6 has been included in
the present study as a control and was further analyzed in
respect to structural changes occurring upon acidification. We
have observed that lowering the pH has an impact on the
protein quaternary structure, leading to dissociation of the
dimer into soluble monomers, as determined by size exclusion
chromatography (Figure S1). Such a formation of S100
monomers has been observed for S100B and S100A11 at low
ionic strength, while keeping the α-helical fold [41]. The
dimerization plane of S100 proteins is composed of highly
conserved hydrophobic residues and we have noticed
substantial solvent-accessible hydrophobic surfaces in the
studied proteins under acidic conditions, as inferred from the
emission increase of ANS, a molecule which becomes
fluorescent upon interacting with structured hydrophobic
moieties in proteins (Figure 3). Nevertheless, folding is
retained: structural analysis of S100A6 by ATR-FTIR indicates
that acidic conditions do not unfold the protein keeping the
overall α-helical structure and evidence the formation of
intermolecular β-sheets (Figure S2). This observation indicates
that, as predicted by the computational and structural analysis,
upon loss of protection from the quaternary structure (Figure
2C), the high aggregation prone segments within helices α1
and α4 may interconvert into β-aggregation prone conformers.
In agreement, S100 proteins bind significantly the fluorophore
ThT, a well-known reporter for the formation of β-aggregates
which shows intensive fluorescence upon intercalation into
stacked β-sheets that form during aggregation (Figure 3).
Interestingly, a number of reports describe the use of ANS for
amyloid fibril detection, as it binds to amyloid fibrillar or pre-
fibrillar states [42] as well as to amyloid fibrils, being actually an
effective in vivo sensor for β-aggregation [43]. Therefore, the
intense ANS binding observed by the S100 proteins may reflect
binding to presumable molten-aggregate states, as defined in
[38]. Altogether, these results denote that amyloid competent
aggregates are formed upon acidification, in agreement with
the exposure of aggregation prone moieties that prompt β-
sheet stacking.

Acidic S100 β-aggregation is a fast kinetic process
We then analyzed the kinetics of S100 β-aggregation under

acidic conditions, monitoring ThT binding as a function of time
(Figure 4A). No lag phase was observed for any of the studied
proteins, which reflects an instantaneous nucleation process
and suggests that these proteins are able to form growth nuclei
directly from their soluble conformations [32,38]. This is in full
agreement with the model involving destabilization of S100
dimers. Different kinetic behaviors were observed: for one
group of S100 proteins including S100A4, S100A6, S100A8/A9
and S100A12 ThT fluorescence increased exponentially as a
function of time until a plateau phase was reached that then
slowly decayed. In contrast a second group including S100A3,
S100B and S100A2 showed a decay right at the start of the
experiment. These kinetic traces are characterized by a slow
time-dependent loss in ThT fluorescence, starting from a high
level of initial binding. Such behavior could have multiple

explanations. One possibility could be that aggregation
excludes ThT binding sites at the aggregate core, resulting in
its displacement, as proposed for the fibril formation of
immunoglobulin light chains for which a similar kinetic behavior
has been observed [44]. Another explanation could be related
to dissociation phenomena of molecules from aggregates,
which could become significant if the pool of starting building
blocks becomes exhausted [32], a likely possibility considering
the very fast initial rate. Finally, in the fibrillation reaction of
glucagon, the development of fibrillar structures with increased
ThT binding is followed by a decrease in ThT binding which the
authors attribute to structural rearrangements of aggregates
into different types of amyloid like fibrils with fewer ThT binding
sites [45].

On the other hand, the ThT kinetics of the first group of
S100s can be described by a mono exponential function for
which different apparent rate constants (kapp) were determined.
S100A12 is the protein undergoing faster ThT binding (kapp=
0.38 h-1), whereas S100A6 (kapp= 0.14 h-1) and S100A4 (kapp=
0.09 h-1) are slower, with comparable fibrillation rates, and
finally S100A8/A9 has the slowest fibrillation rate (kapp= 0.03
h-1). These results suggest that early aggregates formed upon
acidification undergo further polymerization reactions that result
in the buildup of increasingly ordered aggregates, as denoted
by the increase in ThT binding reflecting intercalation into
cross-β structures.

To further investigate the amyloid species formed we have
carried out a dot blot analysis using conformation-specific
antibodies which recognize generic structural epitopes specific
to fibrils and fibrillar oligomers (OC antibody) or pre-fibril
oligomers (A11 antibody) [34]. Pre-fibrillar oligomers are
described as an assembly state that can result in fibrils upon
subsequent concerted conformational conversion, while fibrillar
oligomers will grow into fibrils through elongation by addition of
monomeric blocks [34]. The data obtained show that
acidification of S100 proteins results in the prompt formation of
reactive epitopes towards both types of antibodies in S100A2,
S100A3, S100A4 and S100A8/A9 (Figure 4B). These proteins
thus form rather instantly (t= 0 h) amyloidogenic epitopes
reactive towards OC and A11 antibodies, which are likely
polydispersed mixtures of oligomers and fibers. None or
residual initial reactivity for the two antibodies is observed for
S100A6, S100A12 and S100B. The small scattered spots
observed in S1004, S0100A6 and S100B for the A11 antibody
at time zero were systematically observed in three independent
experiments also when different membranes were used,
suggesting that these may account for insoluble aggregates
that do not deposit uniformly in the membrane when the
samples are dotted. We observed that upon long term storage
at pH 7, some S100 protein preparations develop aggregates
for which we have observed reactivity against the OC and A11
antibodies. In this assay, after approximately seven days (t
=160 h) all proteins developed into conformers reactive to both
antibodies, although with distinct intensities. Strong reactivity to
both OC and A11 antibodies is observed for S100A3, S100A6,
S100A8/A9, whereas atypical weaker spots are noted for
S100A2 and S100B.

β-Aggregation in S100 Proteins
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Structural diversity of S100 β-aggregates
We then moved to characterize the properties of β-

aggregates formed by S100 proteins at ultrastructural detail
using transmission electron microscopy (TEM). In S100A2
preparations, we only observed large amorphous aggregates
(Figure 5A) whereas S100A3 formed smaller aggregates,
mixed with oligomers (Figure 5B, arrowhead); for S100A3 it
was also possible to distinguish fibrillar-like structures 7-10 nm
wide, emerging from the aggregates (Figure 5B, arrow).
However, long protofibrils or fibrils were not detected for this
incubation time. The remaining S100 proteins formed higher-
ordered structures, in particular non-branched structures of
fibrillar nature, although oligomeric species were also

abundantly visualized. S100A4 formed the longest fibrils
although a few oligomers were also easily visualized (Figure
5C); S100A6 produced apparent shorter fibrils but in
significantly higher number than S100A4 (Figure 5D);
S100A8/A9 (Fig. 5EF) and S100A12 (Fig 5GH) appeared as
rich oligomeric preparations although there were fewer fibrils
than in the S100A4 and S100A6 samples; S100A12 formed
short fibrils although the species that protrude through the
fibrils are aggregated forms (Fig. 5GH). Interestingly, S100A4,
S100A6 and S100A8/9 exhibit both clear protofibril structure
and enhanced ThT binding kinetics. Interestingly, these fibrillar
structures appeared as curved species and although we could
not unequivocally identify coiled fibrils. Nevertheless, and

Figure 3.  Fluorescence intensity of ThT and ANS bound to S100 proteins.  The bars denote ThT (dark grey) and ANS (light
grey) fluorescence upon diluting the different S100 proteins (1 mg/ml) in acidic buffer (glycine pH 2.5) at up to 30 min.
doi: 10.1371/journal.pone.0076629.g003
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although we cannot rule out the hypothesis that these are
protofibrils, the fact is that the diameter of the fibrillar structures
depicted in Figure 5 panels C-H is 6-8 nm, which is
characteristic of amyloid fibrils. Finally, S100B formed fibrils
with bundles producing highly tangled and intertwined
structures (Fig. 5IJ). These fibril structures likely formed very
rapidly and gave rise to insoluble precipitates as evidenced by
the ThT decay and dot blot analysis (Figure 4), also suggesting
that S100B might undergo a different amyloidogenic pathway.
Altogether, TEM and dot blot results revealed heterogeneous
amyloidogenesis processes in S100 proteins, generating
polymorphic oligomeric and fibrillar structures.

Discussion

We here show that several human S100 proteins are able to
undergo β-aggregation, a process which might occur in vivo as
a cause or consequence of pathophysiological states. Our
studies have been prompted by the recent proposal that, in
spite of their globular fold, S100 proteins might contain regions
of intrinsic disorder [16], alongside with the observations that a
few S100 have the potential to oligomerize into amyloid
assemblies [22]. The relationship between intrinsic disorder
and aggregation into amyloids is well known for proteins
forming insoluble protein deposits in neurodegenerative
disorders, such as the Alzheimer β-peptide and α-synuclein
[17,46-48]. We hypothesized that a similar mechanism could
apply the S100 proteins. Indeed, the data collected so far
indicate that β-aggregation of S100 proteins could arise from its
dynamic fold and regions prone to intrinsic disorder. From the

aggregation kinetics of S100 proteins one can infer that upon
loss of structural protection an ensemble of amyloid competent
conformations is formed by exposure of the otherwise solvent-
inaccessible sequence segments with high aggregation
propensity. These might have already some cross β-sheet
organization, as denoted from prompt ThT binding. The high
degree of dynamic fluctuations arising from the intrinsically
disordered regions, and the high exposure of hydrophobic
clusters which become exposed to the solvent, results in fast
formation of a polydispersed mixture of oligomers and fibers.
Loosening of the S100 dimer contacts, as evidenced by an
increase in ANS fluorescence and shown by size exclusion
chromatography for S100A6, is likely one of the triggers for
S100 aggregation. Interestingly, aggregation pathways
involving dissociation of oligomers are well-established for
several proteins undergoing pathological β-aggregation, such
as transthyretin [49,50] and SOD1 [51,52], respectively
involved in familial amyloidotic polyneuropathy (FAP) and ALS,
two amyloid-forming diseases. S100 proteins display variable
expression levels which result in a range of physiological
concentrations from pico to low micromolar thus overlapping
the range of known dissociation constants (nano to micromolar)
for the S100 dimers [1]. It is therefore likely that monomers
occur in vivo which might be prone for aggregation. In this
sense, S100 aggregation phenomena may carry important
pathological implications. Amyloid oligomers are ubiquitous
toxic species which can mediate multiple cytotoxic processes
or trigger chronic inflammation as has been proposed for
S100A8/A9 [53].

Figure 4.  ThT binding kinetics and dot blot analysis of amyloid epitopes.  A. S100 proteins (1 mg/mL) were incubated at pH
2.5 and 37°C during 160 h without agitation in the presence of ThT. The enhancement of ThT fluorescence at 480 nm was used to
monitor amyloid formation, and the different proteins are color coded in the figure: S100A2 (dark blue), S100A3 (red), S100A4
(green), S100A6 (purple), S100A8/A9 (orange), S100A12 (light blue), S100B (pink). S100A12 is the protein undergoing faster ThT
binding (kapp= 0.38 h-1), S100A6 (kapp= 0.14 h-1) and S100A4 (kapp= 0.09 h-1) are slower, with comparable fibrillation rates, and finally
S100A8/A9 has the slowest fibrillation rate (kapp= 0.03 h-1). B. After incubation under amyloidogenic conditions, the conformation of
S100 proteins was probed in a dot blot assay with the conformation-sensitive antibodies OC (anti fibrillar oligomers and fibrils) and
A11 (anti pre-fibrillar oligomers). α-synuclein aggregates (oligomers and fibrils) and Aβ (fibrils) are included as controls.
doi: 10.1371/journal.pone.0076629.g004
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